RECOGNITION BY T FACTOR OF A tRNA^{phe} MOLECULE RECOMBINED FROM 3' AND 5' HALVES; AND ITS NON MESSENGER-DEPENDENT BINDING TO RIBOSOMES

M.N. THANG, M. SPRINGER, D.C. THANG and M. GRUNBERG-MANAGO

Institut de Biologie Physico-chimique, Paris Ve, France

Received 24 July 1971

1. Introduction

In bacterial systems, T factors [1] have been shown to be essential for the entrance of aminoacyltRNAs into ribosomes through an intermediate ternary complex: Tu-GTP-aminoacyl-tRNA [2-6]. The formation of this complex seems to be a highly specific control step for the translation process, since no formation takes place with many unfunctional forms of tRNA [5-9], such as: deacylated tRNAs, aminoacyl-tRNAs with the α -NH₂ group blocked or modified, or with the terminal ribose altered. Moreover, initiator tRNA from $E.\ coli$, Met-tRNA_f, cannot form the ternary complex [10]; this exception seems to enforce the idea that factor T is specific and can avoid one kind of translation ambiguity.

We are investigating whether tRNAs with the phosphate-carbone backbone interrupted at one or several points, but still acylable by the corresponding aminoacyl-tRNA-synthetase (see [11]), can or can not be attached to the ribosome at the correct site. The present communication deals with the interaction of a recombined molecule made of 3'- and 5'-halves of yeast tRNA^{phe} [12] (tRNA^{phe}_(3'+5')), with factor T and the poly U-ribosome system.

2. Materials and methods

The origin of the products used is as follows: purified yeast tRNA^{phe}: Boehringer, Germany; poly U: Miles, USA; Nitrocellulose membranes: Millipore, USA; (³H) or (¹⁴C) phenylalanine, (¹⁴C) or α-(³²P) GTP: CEA, Saclay, France; tetracycline chloride: Roussel UCLAF, France.

North-Holland Publishing Company - Amsterdam

The 3'- and 5'-halves of tRNA^{phe}, prepared by the method of Philippsen et al. [12] were obtained as previously described [13]; peaks 1 and 3 were used.

Yeast phenylalanyl-synthetase, prepared according to Fasiolo et al. [14], was a gift from Dr. Ebel's laboratory.

(12 C) or (14 C)phe-tRNA was obtained by incubation in: Tris (pH 8.1), 50 mM; MgCl₂, 15 mM, ATP, 10.5 mM; (14 C) phenylalanine (specific activity: 235 mCi/mmole), 42 μ M; tRNA^{phe}, 10 A₂₆₀ units/ml; phenylalanyl-tRNA-synthetase, 3.3 μ g/ml. The reaction was stopped after 20 min incubation at 25° by acidification to pH with acetic acid, and immediately frozen. The amino acid acceptor activity ranged from 1200 to 1400 pmole per 1 A₂₆₀ unit.

(14C)phe-tRNA_(3'+5') was prepared in the same manner, except for MgCl₂ concentration which was 20 mM, and tRNA which was 20 A₂₆₀ units/ml.

N-acetyl-(³H)phe-tRNA was prepared according to Haenni and Chapeville [15].

T factor was prepared according to Ravel et al. [7], up to the DEAE-Sephadex chromatography step, included. No separation of Tu and Ts was attempted for this investigation.

Ribosomes were prepared from E. coli MRE 600, as described previously [16], except that the ribosomes were washed three times and not purified on DEAE-cellulose.

Formation of the Tu-GTP complex was assayed by its retention on nitrocellulose membrane [17], and that of the ternary complex, phe-tRNA-Tu-GTP, by the disappearance of the binary complex from the filter [6]. Binding of phe-tRNA to ribosomes was also assayed by the Millipore filtration technique [18].

3. Results

3.1. Formation of phe-tRNA-T-GTP complex

Formation of the ternary complex was followed by the filtration technique on nitrocellulose membranes. The T-GTP binary complex bound on the filter disappeared when increasing amounts of phetRNA_(3'+5') were added to the reaction mixture (fig. 1). The use of identical concentrations of intact phe-tRNA or of recombined phe-tRNA resulted in similar decay of the GTP-T complex on the filter. With uncharged tRNA^{phe}_(3'+5') or intact tRNA^{phe}, no formation of the ternary complex occurred, and a slight enhancement of T-GTP formation could even be observed at rather high concentrations, as compared to phe-tRNA. In the absence of T, no GTP was bound under these conditions.

The ability of the recombined phe-tRNA_(3'+5') molecule to form the ternary complex indicates that factor T has a limited selectivity since it can choose an abnormal aminoacyl-tRNA. This immediately raises the question as to how the protein synthesis machinery excludes such an aminoacyl-tRNA in which the anticodon loop has been split off. Experiments on the interaction of such a ternary complex with the poly U-ribosome system tend to elucidate this point.

3.2. Binding of tRNA-T-GTP to ribosomes

Under standard conditions for binding tRNA-T-GTP to ribosomes, the binding of phe-tRNA_(3'+5')

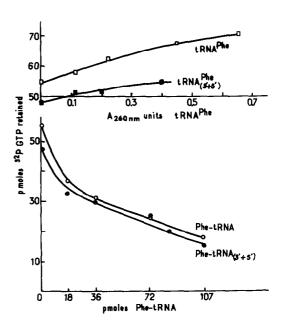


Fig. 1. Formation of phe-tRNA(3'+5')-T-GTP complex. The incubation mixture (100 μ l) contains; buffer A (Tris, pH 7.5, 50 mM; MgCl₂, 10 mM; KCl, 80 mM; NH₄Cl, 80 mM); dithiothreitol, 5 mM; (32 P)GTP, 5.25 μ M; T factors, 18.5 μ g protein; Phe-tRNA (or tRNAPhe), as indicated. The mixture was incubated 10 min at 10° , then immediately diluted by addition of 1 ml of buffer A, and filtrated on a pre-cooled nitrocellulose membrane. The filter was washed several times with cold buffer A, dried, and counted in a liquid scintillator system. Formation of the T-GTP binary complex had been checked and was proportional to the concentration of T factor.

Table 1
T factor dependency for the binding of recombined phe-tRNA phe
(3'+5').

	(14C) phe-tRNA	The bound (pro	noles)	
Mg ²⁺ (mM)	-T		+T	
• • •	–poly U	+poly U	-poly U	+poly U
5	1.24 (< 1.0)*	1.11 (2.85)	5.46 (< 1.0)	6.13 (10.27)
10	1.33 (< 1.0)	1.81 (5.55)	5.01 (< 1.0)	5.88 (10.39)

Binding of phe-tRNA_(3'+5') to ribosomes was assayed by the Millipore filter technique. The reaction mixture (50 µl) contained: Buffer B (Tris, pH 7.6, 50 mM; KCl, 80 mM; NH₄Cl, 80 mM); GTP, 1 mM; dithiothreitol, 10 mM; Mg acetate, as indicated; poly U, 0.4 A₂₆₀ units, ribosomes, 3.6 A₂₆₀ units; factor T, 8.1 µg protein; (¹⁴C)phe-tRNA_(3'+5'), 10 pmoles (or intact (¹⁴C)phe-tRNA, 10.4 pmoles). The mixture was incubated 15 min at 25°, then diluted rapidly with 2 ml of cold buffer B containing 10 mM Mg acetate, and filtrated on nitrocellulose membranes. The filter was washed twice with 5 ml of the same cold buffer, dried, and counted in a liquid scintillator.

^{*} Figures in parentheses correspond to intact phe-tRNA under the same conditions.

Table 2
Influence of N-Ac-phe-tRNA and of phe-tRNA on the binding of phe-tRNA(3'+5').

Additions	(14C)phe-tRNA _(3'+5') bound (pmoles)				
none	4.39				
N-Ac-phe-tRNA	7.33				
(12C)phe-tRNA (M/M)	5.12				
(12C)phe-tRNA (M/2M)	6.09				

Same conditions as for table 1. Mg²⁺, 10 mM; N-Ac-phe-tRNA, 6 pmoles; (¹²C)phe-tRNA, 10 and 20 pmoles.

to ribosomes was 4-5-fold enhanced in the presence of factor T (table 1); stimulation is the same whether poly U is present or not. Moreover, the stimulation is also the same whether in the presence of 5 or 10 mM Mg²⁺. These two characteristics:independence from poly U, and non Mg²⁺ dependent binding, allow to differentiate the binding to ribosomes of an intact phe-tRNA from that of a phe-tRNA in which the anticodon loop has been split off.

To further specify the nature of such a binding, competition experiments were done with either N-acetyl-phenylalanine-tRNA or phe-tRNA. It is known that at 10 mM Mg²⁺, under the same conditions used, N-Ac-phe-tRNA attaches to the peptidyl site [19]; a saturation curve of (³H) labelled N-Ac-phe-tRNA binding to ribosomes enabled the determination of optimum binding conditions which were then used to perform the competition of (¹⁴C)phe-tRNA_(3'+5') binding to ribosomes by N-Ac-phe-tRNA.

Not only did the presence of N-Ac-phe-tRNA show no inhibitory effect whatsoever, but it even resulted in a marked stimulation (table 2). This in-

dicates that phe-tRNA_(3'+5') does not enter the peptidyl site. (¹²C)phe-tRNA did not either inhibit the binding of the split molecule to ribosomes (table 2), and also resulted in a constant stimulation, which in turn indicates that phe-tRNA_(3'+5')does not enter the aminoacyl site. This last assumption is confirmed by the results obtained with tetracyclin which interacts with the aminoacyl site [20], thus inhibiting phe-tRNA binding. As a matter of fact, at low Mg²⁺ concentration and in the presence of T, tetracyclin, at 10⁻⁴ M has no effect on the binding of phe-tRNA_(3'+5'), whereas it inhibits 70% of the binding of intact phe-tRNA (table 3), as previously observed [21]

4. Discussion

The ability of the recombined phe-tRNA(3'+5')molecule to form a ternary complex with T and GTP demonstrates the failure of factor T to discriminate between functional aminoacyl-tRNA and all the nonfunctional ones during protein synthesis. This is the first direct example giving evidence of the limitation of factor T control upon the entrance of aminoacyltRNA into the ribosome. The formation of this ternary complex also suggests that the integrity of the codon-anticodon loop is not essential for the recognition of tRNAphe by factor T, nor does the structural change modulated by the break of a phosphodiester bond in the anticodon region affect this recognition. Consequently, the recombined molecule is still able to assume a tridimensional structure, quite close to that of the original tRNAphe, since it is recognized by three different protein components, i.e. phenylalanyl-tRNA-synthetase [12] polynucleotide phosphorylase [13], and factor T.

Table 3
Effect of tetreacyclin on the binding of phe-tRNA and phe-tRNA(3'+5').

		-T		+T	
		-poly U	+poly U	-poly U	+poly U
(¹⁴ C)phe-tRNA	-tetra	0.24	1.25	0.74	10.50
	+tetra	0.18	1.13	0.33	3.60
(14C)phe-tRNA(3'+5')	-tetra			5.29	6.35
	+tetra			3.46	6.73

Same conditions as for table 1. Mg2+, 5 mM; tetracyclin, 0.4 mM. The values are given in pmoles bound.

The ability of phe-tRNA_(3'+5') to bind to ribosomes reveals one aspect of the exclusion mechanism of unwanted aminoacyl-tRNAs from the proper site on the ribosome. The fact that this binding requires the presence of factor T, eliminates the possibility of a completely non-specific interaction between a nucleic acid molecule and the ribosome. Such a kind of interaction seems unlikely, because the non-enzymatic binding (in the absence of T) is very low, even at 10 mM Mg²⁺ (table 1). However, the attachment of phe-tRNA(3'+5') to ribosomes does not change, whether poly U is present or not in the reaction mixture. This indicates that, as might be expected, the codon-anticodon recognition is not involved in the binding of this abnormal phe-tRNA; such a binding is nonsense and proably not operational. Moreover, such an attachment is quite different from that of another modified yeast phe-tRNA in which only the Y base is excised, and which responds to poly UUC, or to poly U in the presence of high Mg²⁺ concentration or of streptomycin [22]. The lack of inhibition by N-Ac-phe-tRNA, phe-tRNA, or tetracyclin, suggests that phe-tRNA_(3'+5') either does not occupy the peptidyl nor the aminoacyl site, or that it is not correctly adjusted to those sites. It has previously been shown that aminoacyl-tRNA, when misadjusted to its proper ribosomal site, did lose its reactivity towards streptomycin or puromycin [21, 23]. The interesting fact: N-Ac-phe-tRNA, and to a lesser degree phe-tRNA, stimulating the binding of this modified molecule to ribosomes, suggests that a structural change occurs in the ribosome when binding of aminoacyl-tRNA takes place.

We thus tentatively conclude that phe-tRNA $_{(3'+5')}$ -T-can form a ternary complex, phe-tRNA $_{(3'+5')}$ -T-GTP, which in turn can attach to ribosomes in a region where the binding of N-Ac-phe-tRNA and that of phe-tRNA does not interfere. Consequently, when, in the cell, a tRNA has its anticodon split by a nuclease, whether it is first charged and then cut, or vice-versa, it will not be eliminated by factor T; but it will not interfere with protein synthesis because it is not attached on the correct sites for polypeptide elongation.

Acknowledgements

This work was supported by the following grants to Dr. Grunberg-Manago: Centre National de la Recherche Scientifique (GR No. 18); Délégation Générale à la Recherche Scientique et Technique (No. 66 00 020); LNFCC (Comité de la Seine); Foundation pour la Recherche Médicale Française; and a participation of the Commissariat à l'Energie Atomique. M.S. is a Roussel UCLAF Fellow.

References

- [1] J. Lucas-Lenard and F. Lipmann, Proc. Natl. Acat. Sci. U.S. 55 (1966) 1562.
- [2] J.M. Ravel, Proc. Natl. Acad. Sci. U.S. 57 (1967) 1811.
- [3] J. Lucas-Lenard and A.L. Haenni, Proc. Natl. Acad. Sci. U.S. 59 (1968) 554.
- [4] R. Ertel, N. Brot, B. Redfield, J.E. Allende and H. Weissbach, Proc. Natl. Acad. Sci. U.S. 59 (1968) 861.
- [5] A. Skoultchi, Y. Ono, H.M. Moon and P. Lengyel, Proc. Natl. Acad. Sci. U.S. 60 (1968) 675.
- [6] J. Gordon, Proc. Natl. Acad. Sci. U.S. 59 (1968) 179.
- [7] J.M. Ravel, K.L. Shorey and W. Shive, Biochem. Biophys. Res. Commun. 29 (1967) 68.
- [8] C. Jerez, A. Sandoval, J.C. Allende, C. Henes and J. Ofengand, Biochemistry 8 (1969) 3006.
- [9] C.M. Chen and J. Ofengand, Biochem. Biophys. Res. Commun. 41 (1970) 190.
- [10] Y. Ono, A. Skoultchi, A. Klein and P. Lengyel, Nature 220 (1968) 1304.
- [11] R.W. Chember, in: Progr. in Nucl. Ac. Res. and Mol. Biol. Vol. 11, eds. J.N. Davidson and W.E. Cohn (Acad. Press, New York, 1971) p. 489.
- [12] P. Philippsen, R. Thiebe, W. Wintermeyer and H.G. Zachau, Biochem. Biophys. Res. Commun. 33 (1968) 922
- [13] B. Beltchev and M.N. Thang, FEBS Letters 11 (1970)
- [14] F. Fasiolo, N. Befert, Y. Boulanger and J.P. Ebel, Biochim. Biophys. Acta 217 (1970) 305.
- [15] A.L. Haenni and F. Chapeville, Biochim. Biophys. Acta 114 (1966) 135.
- [16] J.C. Lelong, M. Grunberg-Manago, J. Dondon, D. Gros and F. Gros, Nature 226 (1970) 505.
- [17] J.E. Allende and H. Weissbach, Biochem. Biophys. Res. Commun. 28 (1967) 32.
- [18] M. Nirenberg and P. Leder, Science 145 (1964) 1399.

- [19] A.L. Haenni and J. Lucas-Lenard, Proc. Natl. Acad. Sci. U.S. 61 (1968) 1365.
- [20] G. Suarez and D. Nathans, Biochem. Biophys. Res. Commun. 18 (1965) 743.
- [21] L. Zagorska, J. Dondon, J.C. Lelong, F. Gros and M. Grunberg-Manago, Biochimie 53 (1971) 63.
- [22] K. Gosh and H.P. Ghosh, Biochem. Biophys. Res. Commun. 40 (1970) 135.
- [23] J.C. Lelong, M.A. Cousin, D. Gros, M. Grunberg-Manago and F. Gros. Biochem. Biophys. Res. Commun. 42 (1971) 530.